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ABSTRACT

1. INTRODUCTION

This paper presents a numerical method for obtaining the super-

sonic, laminar visc''s flow about arbitrary geometries without

compression surface. at high angle of attack. In particular,

results are presented for blunt biconic bodies with windward

and leeward cuts. The basic approach used is to solve the

steady three-dimensional "Parabolized Navier-Stokes Equations"

(PNS), first derived for circular cones by Lubard and Helli-
well T1.2) " These equations have been used to

predict the flowfield for a variety of different problems, in-

cluding flow over sharp and blunt cones at angle of attack up

to 40 7Srqe 7, flow over spinning cones at angle of attack ,

and flow over cones with mass transfer and temperature varia-

tion at the surface. In addition to these results which were

confined to circular cones, some limited results have been

obtained for biconic geoietries tz-, non-circular conestr and

the NASA space shuttlef**.

For the three dimensional geometries of interest (e.g. Figure

1), we have developed a non-orthogonal curvilinear coordinate

system that appears ideal for this problem. The governing

equations are written in terms of the non-orthogonal coordi-

nates and their metrics. The three velocity components are

also defined in the non-orthogonal coordinate directions.

This is different from writing the equations in an orthogonal

coordinate system and explicitly performing a coordinate

transformation.

Predictions using the new approach have been obtained for

the body illustrated in Figure 1 at angles of attack up to 100

and a Mach number of 10. Surface pressure and heat transfer

have been compared with wind tunnel data and show very good

agreement.
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2. COORDINATE SYSTEM AND EQUATIONS

The steady Navier-Stokes Equations are first written in

general curvilinear coordinates, and then a par icular co-

ordinate system is chosen. One of the coordinates, ci, is

chosen in the general axial direction, another F2' in a

direction away from the body, and the third, &3' around the

body (Figure 2). It is assumed that coordinates with these

characteristics and that the types of flows to be studied

permit the approximations 2-<< a in the viscous terms.aF~1  aW2 aFC3
The resulting system is called the "parolized Navier-Stokes"

(PNS) equations.

In order to achieve validity of the PNS approximation, good

finite difference approximations to the derivatives, and

numerically accurate boundary conditions, it is desirable to
have a coordinate system that has both body and shock surfaces

as coordinate surfaces along with the E2 coordinate orthogonal

to these surfaces. To generate an orthogonal three-dimensional

coordinate system with these properties would be a formidable

task. If it is permitted that the E and C3 coordinates not

necessarily be orthogonal, but are orthogonal to the C co-

ordinate, then a coordinate system with the above properties

can be generated. In summary we construct the Cl C2' and E3
coordinates so as to have the following properties:

1) The body is a coordinate surface (&2 = 0).

2) The g, and &3 coordinates are necessarily orthogonal
only at the body.

3) The &2 coordinate is orthogonal toC 1 and &3"

4) The bow shock is a C 3 coordinate surface.
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In order to generate these non-orthogonal coordinates, we
start at the body and calculate out to the shock. The surface

of the body is written in cylindrical coordinates as

r = r (z,#) (1)

and is defined to be a vector in the &i direction with the

coordinate metrics gij - %i The I and &3 coordinates

on the body (E2 = 0) are generated by using the method out-
lined by Blottner and Ellis in Reference (10).

The coordinates in the region from the body surface to the

shock surface are obtained by taking the cross product,

S "If i', j', k' are unit vectors in cylindrical co-

ordinates, then the lcoordinate vectors are given by

*m = 3 + 2 j' + r - k' , -i 1,2,3. (2)

am 3Em BZn

Defining n as the cross product between g3 and g1, and using

Equation (2), we obtain

n n, + n2 j+' n k' (3)

whereI

n= r M3 t1 R3 'ar)

n2 = ) (4)

-t - _X43
(az ar az*

Now =et C3 =W

n
Now set 22 --- J and again use Equation (2) to obtain the
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equations for - g2 and y . These equations can now

P be integrated from the body (2 = 0) to the shock in order

to obtain z, r, and * as functions of Ei' V 2' and E3

With the coordinates constructed in this manner, a2 is always
orthogonal to si and a3 (i.e., g23 = g21 = 0), but g, is not

necessarily orthogonal to g3. By setting g2 2 = S("11' 3)' the

shock distance, q2 will be orthogonal to the shock surface,

and the shock will correspond to 2 . (Note that doing

this makes the coordinate system a function of the solution

since the shock distance is unknown.)

Figure 3 illustrates the resulting coordinates away from the

body.

Once z(CiF 2,F3 ), r(El, 2,E3) and (i, 2 ,F3) are known

everywhere, the metrics gil can be obtained by differentia-

tion, i.e.,

g.. 1'z 3z + r + r2 W W73 i, = 1,2,3. (5)

Knowing the metrics, the following important quantities used

in the PNS equations can be computed. These are the

determinant of the metric, g, which for our system is

2
g = g11g2 2g 33 - g2 2g1 3  (6)

and the Christoffel symbols of the second kind
I

(ik)g- 
+ k a- m

ij

where the g are defined by
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k gikgkjm (8)

k-1

The steady parabolized Navier-Stokes equations in non-

dimensional form (References 1,2) can now be written. In

order to derive the PNS equations, we assume for the viscous

terms a- <<y, and aq and that grdet ftecoordinate

metrics are of 0(1). No approximations are made to the in-
F viscid terms. As an example, tne tl-momentum equation becomes

1 (Pu2gh) + a (uvg") + -i- PUwg) 1 1 }

+ 2uv 1 1+ 2uw 11+ v2 2 2 + w {
1 r 1  2 3 12 121 2 3)

+ 2 9 - 33 LP- - 13 22719

3 BE

= y a 2)u~l1 2 v .2 3ai 1v ) 922 91 3 (~aw+ a2

+jl - - 'S ;' 3  32 g - __ it

+6 11922 ( au !2

where the velocity vector is written as

V u al + v 2 + w 3  (10)
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The boundary conditions at the body are the no-slip conditions,

a specified enthalpy and the pressure solved by using the

v-momentum equation. The Rankine-Hugoniot jump conditions are
used at the shock.

* The equations are solved by implicit differencing in the C2-C3

plane. The resulting algebraic equations are solved by the

Newton-Raphson/Gauss Seidel iteration presented in References

1 and 2. A plane of initial condition data downstream of the

sonic plane is required in order to obtain a solution. This

is obtained in the present case by utilizing an asixsymmetric

shock layer solution for the spherical nose region and trans-

forming this solution into the coordinate system of the PNS
equations at the sphere-cone juncture.

3. CONCLUSIONS AND RESULTS

The heat transfer, force and moment coefficients and surface
pressure results of four computed cases (Table 1) have been

compared against wind tunnel data obtained by Arnold Engineer-

ing and Development Center (AEDC). Selected results for the

14/7 biconic with cuts and slice at 10 angle of attack (Case

4) are presented here. Figure 4 describes the body geometry
used. The body has a plane of symmetry and a nose radius of

1/2 inch. Figure 5 compares the measured and calculated
force and moment coefficients for a similar body but with only

a windward cut. Excellent agreement between the predictions

and the measurements are obtained.

The remainder of the comparisons will be surface pressure and

heat transfer results and will be for the exact geomety of

Figure 4. Figure 6 compares the heat transfer over the biconic

and cut regions. The axial distance is measured in nose radii
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from the apex of the 140 cone. On the windward side and at

90 degrees the agreement is very good. On the leeward side

up to just past the biconic junction the agreement is also

very good, but then the solution starts to diverge from the

data. It is felt that this is due to transition from laminar

to turbulent flow. For the a=100 case, separation in the

circumferential direction first occurs on the 140 fore-cone

near the leeside, but presents no running problems for the

code.

Figure 7 is a comparison of the wall pressure from the HYTAC

calculations and the AEDC data and also an inviscid calcula-

tion (11) The windward side pressures agree quite well, and
on the leeward side the data and HYTAC results are also in

agreement. The axial distance in this plot is in inches from

the tip of the blunt body. Figures 8 and 9 are circumferential

plots of the wall pressure and heat transfer comparing the

HYTAC results with the data in the cut region at an axial

distance of Z = 21.77" (from the blunt nose). In these plots

the X-axis is in inches from the plane of symmetry of the body.

*The new non-orthogonal body-normal shock-normal coordinate

system works extremely well. Only 25 points in the normal

direction are needed to obtain good resolution., With 19

circumferential points the solution over an entire body is

obtained with 90 axial steps in approximately 5 minutes on a

CDC 7600. The fast running time and good agreement with data

is felt to be due in large part to the new coordinate system.
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